Донские Радиолюбители
16+
главная
новости
статьи
частоты
репитеры
радиоклубы
форум
ссылки
литература
RK6LZQ
Статьи

Статьи : Передача данных / WiMAX /

Стандарт IEEE 802.16 WiMAX

Добавлено пользователем administrator 04.05.2013 в 08:20.
Содержание:
О технологии WiMAX
Область применения
Цель технологии WiMAX
Целесообразность использования WiMAX как технологии доступа
Фиксированный и мобильный вариант WiMAX
Описание стандарта WiMAX
Топология сети
Диапазон частот
Базовое оборудование
Пользовательское оборудование
Сети WiMAX
Литература



Базовая станция HiperMAX

Антенны базовой станции WiMAX

Пользовательская антенна WiMAX

WiMAX USB модем Comstar

WiMAX USB модем Comstar

WiMAX USB модем Comstar

WiMAX USB модем ZTE AX320 IEEE 802.16e-2005 3400-3600 МГц

Смартфон HTC с WiMAX

Ноутбук Samsung с WiMAX

WiMAX (англ. Worldwide Interoperability for Microwave Access) — телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован).
Название «WiMAX» было создано WiMAX Forum — организацией, которая была основана в июне 2001 года с целью продвижения и развития технологии WiMAX. Форум описывает WiMAX как «основанную на стандарте технологию, предоставляющую высокоскоростной беспроводной доступ к сети, альтернативный выделенным линиям и DSL». Максимальная скорость — до 1 Гбит/сек на ячейку.

Сегодня под WiMax понимают сеть, построенную на основе протокола 802.20 (ранее — протокол 802.16). Эта сеть имеет радиус действия до 50 километров, что дает возможность устанавливать точки точно таким же образом, как и базовые станции операторов мобильной связи.

Таблица 1. Основные параметры стандартов IEEE 802.16 и IEEE 802.16-2004
ПараметрIEEE 802.16IEEE 802.16-2004
Диапазон частот10—66 ГГц2—11 ГГц
Условия использованияТолько прямая видимостьПрямая и непрямая видимость
Скорость передачи данных34—134 МБит/с1—75 Мбит/с
МодуляцияОдна несущая (SC), манипуляция QPSK, QAM-16, QAM-64Одна несущая (SC), манипуляция QPSK, QAM-16, QAM-64.
OFDM 256 поднесущих, OFDMA 2048 поднесущих.
Манипуляция BPSK, QPSK, QAM-16, QAM-64, опционально QAM-256
Тип дуплексаTDD/FDDTDD/FDD
Ширина канала20, 25, 28 МГц1,25—20 МГц
Радиус зоны покрытия2—5 км4—6 км

Эта система передачи данных была разработана для использования в крупных городах для того, чтобы решить проблему покрытия, с которой не всегда могут справиться кабельные провайдеры, а также чтобы уменьшить материальные и временные затраты на прокладку сети. Около десяти лет назад для подключения к Интернету крупного предприятия со штатом сотрудников, превышающим несколько тысяч, могло уйти до месяца рабочего времени, но с началом массового внедрения технологии WiMax на это может уйти всего пара дней или даже несколько часов.

Точки доступа для сетей WiMax лучше всего устанавливать на последних этажах высоток. Имея рабочий диапазон 2—11 ГГц, они позволяют передавать данные со скоростью до 70 Мб/сек в зоне прямой видимости. Пропускная способность регулируется на оборудовании провайдера, что дает возможность выбирать именно то соотношение скорости и цены, которое выгодно конкретным потребителям Интернета.

Использование WiMax связано не только с классическим представлением передачи цифровой информации, но и голоса, а также потокового видео. Такой потенциал дает широкие возможности для организации видеоконференций.

В будущем возможен массовый переход на использование технологии 802.11/16, пока что она только приживается у нас в стране и не получила достойного распространения. Очевидно, что работать сети WiMax будут в тесном содружестве с 3G/4G.

Область применения

WiMAX подходит для решения следующих задач:
  • Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.
  • Обеспечения беспроводного широкополосного доступа как альтернативы выделенным линиям и DSL.
  • Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.
  • Создания точек доступа, не привязанных к географическому положению.
  • Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе SCADA.
WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

Цель технологии WiMAX

Цель технологии WiMAX заключается в том, чтобы предоставить универсальный беспроводный доступ для широкого спектра устройств (рабочих станций, бытовой техники "умного дома", портативных устройств и мобильных телефонов) и их логического объединения — локальных сетей. Надо отметить, что технология имеет ряд преимуществ.

По сравнению с проводными (xDSL, T1), беспроводными или спутниковыми системами сети WiMAX должны позволить операторам и сервис-провайдерам экономически эффективно охватить не только новых потенциальных пользователей, но и расширить спектр информационных и коммуникационных технологий для пользователей, уже имеющих фиксированный (стационарный) доступ.
Стандарт объединяет в себя технологии уровня оператора связи (для объединения многих подсетей и предоставления им доступа к Интернет), а также технологии "последней мили" (конечного отрезка от точки входа в сеть провайдера до компьютера пользователя), что создает универсальность и, как следствие, повышает надёжность системы.
Беспроводные технологии более гибки и, как следствие, более просты в развёртывании, так как по мере необходимости могут масштабироваться.
Простота установки как фактор уменьшения затрат на развертывание сетей в развивающихся странах, малонаселённых или удалённых районах.
Дальность охвата является существенным показателем системы радиосвязи. На данный момент большинство беспроводных технологий широкополосной передачи данных требуют наличия прямой видимости между объектами сети. WiMAX благодаря использованию технологии OFDM создает зоны покрытия в условиях отсутствия прямой видимости от клиентского оборудования до базовой станции, при этом расстояния исчисляются километрами.
Технология WiMAX изначально содержит в себе протокол IP, что позволяет легко и прозрачно интегрировать её в локальные сети.
Технология WiMAX подходит для фиксированных, перемещаемых и подвижных объектов сетей на единой инфраструктуре.

Целесообразность использования WiMAX как технологии доступа

Проблема последней мили всегда была актуальной задачей для связистов. К настоящему времени появилось множество технологий последней мили, и перед любым оператором связи стоит задача выбора технологии, оптимально решающей задачу доставки любого вида трафика своим абонентам. Универсального решения этой задачи не существует, у каждой технологии есть своя область применения, свои преимущества и недостатки. На выбор того или иного технологического решения влияет ряд факторов, в том числе:
  • стратегия оператора, целевая аудитория, предлагаемые в настоящее время и планируемые к предоставлению услуги,
  • размер инвестиций в развитие сети и срок их окупаемости,
  • уже имеющаяся сетевая инфраструктура, ресурсы для её поддержания в работоспособном состоянии,
  • время, необходимое для запуска сети и начала оказания услуг.
У каждого из этих факторов есть свой вес, и выбор той или иной технологии принимается с учётом всех их в совокупности.

Фиксированный и мобильный вариант WiMAX

Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели. А потому WiMAX-системы, основанные на версиях стандарта IEEE 802.16 e и d, практически несовместимы. Краткие характеристики каждой из версий приведены ниже.
  • 802.16-2004 (известен также как 802.16d и фиксированный WiMAX). Спецификация утверждена в 2004 году. Используется ортогональное частотное мультиплексирование (OFDM), поддерживается фиксированный доступ в зонах с наличием либо отсутствием прямой видимости. Пользовательские устройства представляют собой стационарные модемы для установки вне и внутри помещений, а также PCMCIA-карты для ноутбуков. В большинстве стран под эту технологию отведены диапазоны 3,5 и 5 ГГц. По сведениям WiMAX Forum, насчитывается уже порядка 175 внедрений фиксированной версии. Многие аналитики видят в ней конкурирующую или взаимодополняющую технологию проводного широкополосного доступа DSL.
  • 802.16-2005 (известен также как 802.16e и мобильный WiMAX). Спецификация утверждена в 2005 году. Это — новый виток развития технологии фиксированного доступа (802.16d). Оптимизированная для поддержки мобильных пользователей версия поддерживает ряд специфических функций, таких как хэндовер, idle mode и роуминг. Применяется масштабируемый OFDM-доступ (SOFDMA), возможна работа при наличии либо отсутствии прямой видимости. Планируемые частотные диапазоны для сетей Mobile WiMAX таковы: 2,3—2,5; 2,5—2,7; 3,4—3,8 ГГц. В мире реализованы несколько пилотных проектов, в том числе первым в России свою сеть развернул «Скартел». Конкурентами 802.16e являются все мобильные технологии третьего поколения (например, EV-DO, HSDPA).
Основное различие двух технологий состоит в том, что фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 150 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.

Описание стандарта WiMAX

На физическом уровне в стандарте IEEE 802.16-2004 определены три метода передачи данных: метод модуляции одной несущей (SC), метод ортогонального частотного мультиплексирования (OFDM) и метод множественного доступа на основе такого мультиплексирования (OFDMA).

Спецификация физического уровня WirelessMAN-OFDM является наиболее интересной с точки зрения практической реализации. Она базируется на технологии OFDM, что значительно расширяет возможности оборудования, в частности, позволяет работать на относительно высоких частотах в условиях отсутствия прямой видимости. Кроме того, в нее включена поддержка топологии «каждый с каждым» (mesh), при которой абонентские устройства могут одновременно функционировать и как базовые станции, что сильно упрощает развертывание сети и помогает преодолеть проблемы прямой видимости.



Рис.1. Варианты отображения бит на фазовую плоскость

Рис.2. Ортогональные поднесущие

Рис.3. Иллюстрация эффекта многолучевого распространения

Рис.4. Обработка OFDM-символа при многолучевом распространении

Рис.5. Предпочтительный метод модуляции в зависимости от отношения сигнал/шум

Модуляция OFDM

При формировании OFDM-сигнала цифровой поток данных делится на несколько подпотоков, и каждая поднесущая связывается со своим подпотоком данных. Амплитуда и фаза поднесущей вычисляются на основе выбранной схемы модуляции. Согласно стандарту, отдельные поднесущие могут модулироваться с использованием бинарной фазовой манипуляции (BPSK), квадратурной фазовой манипуляции (QPSK) или квадратурной амплитудной манипуляции (QAM) порядка 16 или 64. Варианты отображения бит на фазовую плоскость для каждого вида манипуляции представлены на рисунке #1. В передатчике амплитуда как функция фазы преобразуется в функцию от времени с помощью обратного быстрого преобразования Фурье (ОБПФ). В приемнике с помощью быстрого преобразования Фурье (БПФ) осуществляется преобразование амплитуды сигналов как функции от времени в функцию от частоты.

Применение преобразования Фурье позволяет разделить частотный диапазон на поднесущие, спектры которых перекрываются, но остаются ортогональными. Ортогональность поднесущих означает, что каждая из них содержит целое число колебаний на период передачи символа. Как видно из рисунке #2, спектральная кривая любой из поднесущих имеет нулевое значение для «центральной» частоты смежной кривой. Именно эта особенность спектра поднесущих и обеспечивает отсутствие между ними интерференции.

Одним из главных преимуществ метода OFDM является его устойчивость к эффекту многолучевого распространения. Эффект вызывается тем, что излученный сигнал, отражаясь от препятствий, приходит к приемной антенне разными путями (рис. 3), вызывая межсимвольные искажения. Этот вид помех характерен для городов с разноэтажной застройкой из-за многократных отражений радиосигнала от зданий и других сооружений. Для того чтобы избежать межсимвольных искажений, перед каждым OFDM-символом вводится защитный интервал, называемый циклическим префиксом. Циклический префикс представляет собой фрагмент полезного сигнала, что гарантирует сохранение ортогональности поднесущих (но только в том случае, если отраженный сигнал при многолучевом распространении задержан не больше, чем на длительность циклического префикса). Кроме того, циклический префикс позволяет выбрать окно для преобразования Фурье в любом месте временного интервала символа (рис. 4)

Помехоустойчивое кодирование

Многолучевое распространение радиосигнала может приводить к ослаблению и даже полному подавлению некоторых поднесущих вследствие интерференции прямого и задержанного сигналов. Для решения этой проблемы используется помехоустойчивое кодирование. В стандарте IEEE 802.16-2004 предусмотрены как традиционные технологии помехоустойчивого кодирования, так и относительно новые методы. К традиционным относится сверточное кодирование с декодированием по алгоритму Витерби и коды Рида-Соломона. К относительно новым — блочные и сверточные турбокоды. Для увеличения эффективности кодирования без снижения скорости кода применяется перемежение данных. Перемежение увеличивает эффективность кодирования, поскольку пакеты ошибок дробятся на мелкие фрагменты, с которыми справляется система кодирования.

Гибкость

Важной особенностью физического уровня является возможность выбора ширины для полосы пропускания канала. Стандарт предусматривает выбор ширины полосы с шагом от 1,25 МГц до 20 МГц со множеством промежуточных вариантов, что позволяет более эффективно использовать радиочастотный спектр. Кроме того, в стандарт заложена адаптивная сигнально-кодовая конструкция, то есть система подстраивается к характеристикам канала в каждый момент времени, «перекачивая» скорость в помехоустойчивость и наоборот. В соответствии со стандартом, в зависимости от отношения сигнал/шум (S/N) система выбирает метод модуляции, при котором может быть обеспечена устойчивая работа (рис. 5)

Защита информации

В соответствии со стандартом, для предотвращения несанкционированного доступа и защиты пользовательских данных осуществляется шифрование всего передаваемого по сети трафика. Базовая станция (БС) WiMAX представляет собой модульный конструктив, в который при необходимости можно установить несколько модулей со своими типами интерфейсов, но при этом должно поддерживаться административное программное обеспечение для управления сетью. Данное программное обеспечение обеспечивает централизованное управление всей сетью. Логическое добавление в существующую сеть абонентских комплектов осуществляется также через эту административную функцию.

Абонентская станция (АС) представляет собой устройство, имеющее уникальный серийный номер, МАС-адрес, а также цифровую подпись Х. 509, на основании которой происходит аутентификация АС на БС. При этом, согласно стандарту, срок действительности цифровой подписи АС составляет 10 лет. После установки АС у клиента и подачи питания АС авторизуется на базовой станции, используя определенную частоту радиосигнала, после чего базовая станция, основываясь на перечисленных выше идентификационных данных, передает абоненту конфигурационный файл по TFTP-протоколу. В этом конфигурационном файле находится информация о поддиапазоне передачи (приема) данных, типе трафика и доступной полосе, расписание рассылки ключей для шифрования трафика и прочая необходимая для работы АС информация. Необходимый файл с конфигурационными данными создается автоматически, после занесения администратором системы АС в базу абонентов, с назначением последнему определенных параметров доступа.

После процедуры конфигурирования аутентификация АС на базовой станции происходит следующим образом:
  • Абонентская станция посылает запрос на авторизацию, в котором содержится сертификат Х.509, описание поддерживаемых методов шифрования и дополнительная информация.
  • Базовая станция в ответ на запрос на авторизацию (в случае достоверности запроса) присылает ответ, в котором содержится ключ на аутентификацию, зашифрованный открытым ключом абонента, 4-битный ключ для определения последовательности, необходимый для определения следующего ключа на авторизацию, а также время жизни ключа.
  • В процессе работы АС через промежуток времени, определяемый администратором системы, происходит повторная авторизация и аутентификация, и в случае успешного прохождения аутентификации и авторизации поток данных не прерывается.

В стандарте используется протокол PKM (Privacy Key Management), в соответствии с которым определено несколько видов ключей для шифрования передаваемой информации:
  • Authorization Key (АК) — ключ, используемый для авторизации АК на базовой станции;
  • Traffi c Encryption Key (ТЕК) — ключ, используемый для криптозащиты трафика;
  • Key Encryption Key (КЕК) — ключ, используемый для криптозащиты передаваемых в эфире ключей.
  • Согласно стандарту, в каждый момент времени используются два ключа одновременно, с перекрывающимися временами жизни. Данная мера необходима в среде с потерями пакетов (а в эфире они неизбежны) и обеспечивает бесперебойность работы сети. Имеется большое количество динамически меняющихся ключей, достаточно длинных, при этом установление безопасных соединений происходит с помощью цифровой подписи. Согласно стандарту, криптозащита выполняется в соответствии с алгоритмом 3-DES, при этом отключить шифрование нельзя. Опционально предусмотрено шифрование по более надежному алгоритму AES.

Топология сети


Рис.6. Возможные топологии сети WiMAX
Для соединения «точка–точка» (рис. 6) используются две направленные друг на друга антенны; так строятся, например, радиорелейные линии передач, в которых расстояние между соседними релейными вышками может исчисляться десятками километров.
При топологии «точка–многоточка» в центре «ячейки» помещается базовая станция со всенаправленной или секторной антенной, а все обслуживаемые ей абоненты снабжаются сфокусированными на нее направленными антеннами.
Другой тип связи получится при использовании только всенаправленных антенн. В этом случае будет достигнута возможность соединения «каждого с каждым», или «многоточка–многоточка» (mesh).
Базовая станция WiMAX представляет собой модульное решение, которое может по мере необходимости дополняться различными блоками, например, модулями для связи с магистральной сетью провайдера. В минимальной конфигурации устанавливается модуль радиоинтерфейса и модуль соединения с проводной сетью.

Диапазон частот


При выборе оборудования WiMAX кроме его технических характеристик и цены важное и зачастую определяющее значение представляет такой фактор, как специфические для России трудности оформления частотных разрешений. Дело в том, что в России практически не существует «безлицензионных» диапазонов. Для разных типов оборудования предусмотрен различный порядок получения частотных разрешений. Для работы в любых диапазонах операторы связи должны получить достаточно сложные и многоуровневые разрешения как частотных служб, так и служб надзора за связью.

Очевидно, что в нашей стране главным фактором, влияющим на скорость внедрения систем WiMAX, являются вопросы регулирования спектра, так как развитие рынка услуг WiMAX напрямую зависит от выделения операторам необходимого частотного ресурса. Сегодня наиболее перспективными с точки зрения будущего развития технологии WiMAX являются диапазоны в районе 2,4, 3,5 и 5,6 ГГц.

Следует учитывать, что распространение радиоволн в различных участках спектра имеет свои особенности, которые во многом определяют дальность действия оборудования, а также устойчивость к многолучевости.

Базовое оборудование

Компания Fujitsu разработала чип MB87M3400 как для базовых, так и для абонентских станций. Однако, в отличие от решения Intel, чип Fujitsu имеет интерфейс для внешнего процессора. Для реализации полнодуплексного режима требуется использовать два чипа, один из которых выполняет функции физического уровня и нижнего уровня MAC-протокола, а второй представляет собой внешний процессор (сторонней фирмы) для реализации верхнего уровня MAC-протокола. Для разработки базовых станций компания Fujitsu предоставляет отладочный комплект, реализующий полнодуплексный режим работы, с процессором Freescale MPC8560, но не поставляет программное обеспечение, обеспечивающее функции верхнего уровня MAC-протокола.

Компания PicoChip предлагает решение PC102/PC8520, построенное на двух своих параллельных процессорах PC102. Компания предоставляет программное обеспечение, реализующее физический уровень и функции нижнего уровня MAC-протокола на чипах PC102. Так же как и Fujitsu, компания PicoChip использует процессор Freescale MPC8565 для реализации верхнего уровня MAC-протокола в своем отладочном комплекте. Однако в отличие от Fujitsu, PicoChip лицензировала свое программное обеспечение для верхнего уровня MAC-протокола. Так как в решение PC102/PC8520 не заложены функции шифрования-дешифрования, для их выполнения должен быть использован внешний процессор.

Чип для разработки базовых станций SQN2010 компании Sequans является первой «системой на кристалле», имеющей полнодуплексный режим. SQN2010 реализует все функции физического и MAC уровней, необходимые для полнодуплексной работы базовой станции. Чип SQN2010 отличается от SQN1010 наличием второго центрального процессора, реализующего верхний уровень MAC-протокола. На чипе SQN1010 предусмотрен интерфейс PCI для обеспечения возможности подключения внешнего процессора.

Решение DM256/MC336 компании Wavesat может быть использовано и для разработки базовых станций. Это решение поддерживает полнодуплексный режим работы, но следует отметить, что для реализации функций шифрования-дешифрования оно требует подключения внешнего процессора. Так же как и Fujitsu, Wavesat не предоставляет программное обеспечение для верхнего уровня MAC-протокола, необходимое для разработки базовых станций.

Из четырех описанных решений только чипы PicoChip PC102 не интегрируют в себе функций АЦП/ЦАП. Поэтому для разработок, в которых используется аналоговый радиоинтерфейс, дополнительно потребуются устройства АЦП/ЦАП.

Пользовательское оборудование

Оборудование для использования сетей WiMAX поставляется несколькими производителями и может быть установлено как в помещении (устройства размером с обычный DSL-модем), так и вне его. Следует заметить что оборудование, рассчитанное на размещение внутри помещений и не требующее профессиональных навыков при установке, конечно, более удобно, однако способно работать на значительно меньших расстояниях от базовой станции, чем профессионально установленные внешние устройства. Поэтому оборудование, установленное внутри помещений, требует намного больших инвестиций в развитие инфраструктуры сети, так как подразумевает использование намного большего числа точек доступа.
С изобретением мобильного WiMAX всё больший акцент делается на разработке мобильных устройств. В том числе специальных телефонных трубок (похожих на обычный мобильный смартфон), и компьютерной периферии (USB радио модулей и PC card). В последнее время налажен выпуск смартфонов, работающих не только в 2G (GSM, CDMA) и 3G (HSPDA, UMTS) сетях, но и в 4G (WiMAX), а также ноутбуков со встроенным модулем WiMAX.

Для разработчиков абонентского оборудования WiMAX наиболее перспективными являются «системы на кристалле» от четырех производителей: Fujitsu, Intel, Sequans и Wavesat.

Компания Intel первой предложила разработчикам «систему на кристалле» PRO/Wireless 5116 для абонентских станций WiMAX, в которой были интегрированы функции как физического, так и MAC уровней. Чип MB87M3400 компании Fujitsu предназначен для более широкого диапазона приложений и позволяет разрабатывать как базовое, так и абонентское оборудование. Компания Sequans разработала отдельные чипы SQN1010 и SQN2010 — для базового и абонентского оборудования соответственно.

«Системы на кристалле» от Fujitsu, Intel и Sequans полностью реализуют функции MAC-протокола для абонентских станций WiMAX. Другой подход к разработке предложила компания Wavesat, выпустив две микросхемы: OFDM-модем DM256 (реализует функции физического уровня) и MC336 (представляет собой вычислительное ядро, реализующее нижний уровень MAC-протокола). Для разработки абонентского модема на базе «системы на кристалле» от Fujitsu, Intel и Sequans не требуется дополнительного внешнего процессора.

Характеристики рассматриваемых чипов, определяемые типом дуплекса, шириной канала и другими параметрами, сильно отличаются. Для организации полнодуплексной работы на базе решения Fujitsu MB87M3400 требуется использование двух чипов. Микросхема Sequans SQN1010 является первой «системой на кристалле», которая поддерживает полнодуплексный режим работы. Решение компании Wavesat DM256/MC336 также позволяет организовывать полнодуплексный режим работы на основе одной микросхемы OFDM-модема DM256.

Микросхемы компаний Fujitsu и Sequans позволяют организовывать каналы шириной до 20 и 28 МГц соответственно, тогда как максимальная ширина канала для чипов Intel и Wavesat составляет 10 МГц с промежуточными значениями 3,5 и 7 МГц.

Радиоинтерфейс рассмотренных «систем на кристалле» содержит блоки АЦП/ЦАП для прямого аналогового соединения с внешним приемопередатчиком.

Сети WiMAX

Сети мобильного и фиксированного WiMAX и pre-WiMAX в России строят:
  • Компания «Престиж-интернет» под торговой маркой «Энфорта»(более 200 крупных городов России)
  • «Новые телекоммуникации» под торговыми марками «WiTe» и «NEX3»
  • «Интерпроект» под торговой маркой «Freshtel» (Тула, Новомосковск, Чехов, Серпухов, Липецк)
  • «Тривон Нетворкс» под торговой маркой «Virgin Connect»
  • Компания ЗАО МедиаСети под торговой маркой «Virgin Connect»
  • Компания ЗАО "Системы Телеком" (Кемерово, Новосибирск)
  • Совтест (Курск)
  • DARS TELECOM (Ульяновск)
  • ГЛОБАЛФОН (Иваново, Сочи, Кузнецк)
  • АТЭКС ПЛЮС (Рыбинск)
  • НьюКом (Тюмень)
  • Элоун Связь (Рязань)
  • СкайТ, ООО" Скай Тел" (Тульская область)
  • Интерсвязь (Челябинск)
  • "Иркутскэнергосвязь", дочернее предприятие Иркутскэнерго (Иркутская область)
  • а также более 20 региональных интернет-провайдеров.

Также, некогда, услуги мобильного WiMAX предоставляли "Комстар-Регионы" и "Ёта".

Литература:

  • http://cn.dn.ua/inetaccess/besprovodnaya-tekhnologiya-peredachi-dannykh-wimax.php
  • http://ru.wikipedia.org/wiki/WiMAX
  • http://ru.wikipedia.org/wiki/Операторы_WiMAX
  • http://www.thg.ru/network/wimax_2007/index.html
  • http://www.wireless-e.ru/articles/wifi/2006_3_14.php
  • → 21:19 MSK. Воскресенье, 05 мая 2024 г.
        Нашли ошибку? Сообщите вэбмастеру: wеbmаstеr@qrv.su.
    ◊  О проекте QRV.SU.
     Условия использования материалов сайта.
    © При перепечатке материалов ссылка обязательна.
    ® qrv.ru : 2005 — 2006
    ® qrv.su : 2008 — 2024
        Построено на mini.aCMS™.
    radionet
    web-ring: электроника, электронные компоненты и приборы Электроника, электронные компоненты и приборы Случайный Предыдущий Следующий Яндекс цитирования Коллективная радиостанция RK6LZQ радиоклуб Элита Каменск-Шахтинский Коллективная радиостанция RK6LWL радиоклуб Возрождение г. Донецк
    free counters